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Some new highest-wave solutions for deep-water waves 
of permanent form 
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The classical series expansion procedure of Michell is used to calculate some new 
highest-wave solutions. These solutions are shown to correspond to the types of 
gravity waves studied recently by Chen & Saffman (1980). Results are presented for 
wave profiles, phase speeds, and kinetic and potential energies. 

1. Introduction 
In  a recent paper Chen & Saffman (1980) presented results of numerical calculations 

for periodic, irrotational gravity waves of permanent form, In  addition to the classical 
Stokes wave, which Chen & Saffman call a regular wave, they obtained solutions for 
new types of gravity waves, which they termed irregular waves. Their numerical 
procedure involves calculations for a regular wave with an integral number n wave- 
lengths included in the computation region of length L. These waves are called regular 
waves of class n. At some amplitude, depending on the value of n, they find a bifur- 
cation point in the regular wave solution, and the new solution branch is followed to 
yield an irregular wave of class n having n crests per wavelength. No irregular waves 
of class 1 were found. Chen & Saffman presented det,ailed computations for the 
irregular waves of classes 2 and 3 for amplitudes up to near the highest wave ampli- 
tudes, although they made no attempt to calculate the highest waves. 

The purpose of the present paper is to show that the highest wave limits of the new 
waves calculated by Chen & Saffman may be obtained from the analysis of Michell 
(1893). By including the fact that the highest wave must have one sharp crest (with 
a 120" enclosed angle) per wavelength, Michell developed a series solution for the 
complex velocity in terms of the complex potential, with the series coefficients deter- 
mined by a set of nonlinear algebraic equations. Although Michell obtained a solution 
only for the highest Stokes wave (i.e. a regular wave of class 1), we show in the present 
work that other solutions for the series coefficients exist that yield the limiting wave 
solutions for the new wave types studied by Chen & Saffman. In  particular, we 
present specific results for irregular waves of classes 2, 3 and 4. 
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2. The governing equations 
Consider steady, symmetric, periodic waves propagating under the influence of 

gravity on the free surface of a fluid of infinite depth. Assume that the fluid is inviscid 
and incompressible and that the motion is two dimensional and irrotational. In 
addition, assume the existence of a limiting form of these waves in which the fluid 
speed at the highest crest is zero. 

In a reference frame moving with the wave, define a Cartesian co-ordinate system 
such that they axis is perpendicular to the undisturbed free surface, directed opposite 
to the force of gravity, and the x axis is horizontal, directed to the right. Locate the 
origin of the co-ordinate system a t  the summit of one of the crests where the fluid speed 
is zero. Let the wavelength of the wave be A and the wave speed (i.e. the fluid speed 
at infinite depth) be c. For this flow we can define a velocity potential # and a stream 
function $ in the conventional manner with q5 = 0 at the crest, $ = 0 on the surface, 
and @ < 0 below the surface. The complex position z = x+iy and the complex 
potential f = q5 + i$ are analytical functions of each other. 

Following Michell(1893), we choosef as the independent variable and the complex 
velocity w = (dz/df)-l as the dependent variable. The problem is to determine the 
function w(f) that is analytic in the lower half of thef-plane and that satisfies the 
following boundary conditions: 

a - lw(f))4-4gIm[w(f)] = 0 on $ = 0;  
84 

w(f)+c as ++ -a3. 

(a/aq5) (!z2 + 2gY) = 0, 

Equation (1) represents the q5 derivative of the Bernoulli equation: 

where q2 = IwI2, ay/aq5 = q-”q5/ay = - lwl-2Im (w), and g is the acceleration of 
gravity. 

Stokes (1880) showed that for small If J an approximate solution to (1) with w (f) = 0 
atf = Ois 

which states that the crest is a corner with an enclosed angle of 120’. Michell (1893) 
presented a method that incorporates (3) into a computation of the entire flow field 
for the highest wave. 

W ( f )  = (3@/2)*f ‘1 (3) 

3. The solution procedure 

Michell(1893), we assume the following expansion: 
We now choose units of length and time such that h = 2n and g = 1. Following 

W 

w(f) = C[I - exp ( - if/c)lf b,exp ( - inf/c). (4) 

The assumption that the waves are symmetric implies that the b, must be real. 
Equation (4) satisfies (2) if b, = 1, and reduces to (3) in the limit of small 

,=O 

If/c-2nN(, N = 0 ,  + 1 , + 2  ,... . 
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Substitution of the series ( 4 )  into ( 1 )  and equating the coefficients of the individual 
trigonometric functions to zero gives the following system of nonlinear algebraic 
equations for the b, : 

(51 
fo rn=0 ,1 ,2  ,..., and 

(3n + 2) A ,  - (3n + 1 )  A,+1 - F,/c2 = 0, 

rn 

Apart from notation and choice of units, these are the same relations obtained by 
Michell(l893). 

Michell (1893) found an approximate solution to (5) by assuming the 5, to be of 
order by, neglecting all terms of order higher than bi, and solving the resulting 4 non- 
linear equations for b,, b,, b, and c2. Michell did not specify the method he used to 
solve the system of nonlinear equations and presented only one solution, which 
exhibits one crest per wavelength. From Michell's presentation, one might infer that 
the system has only one solution; however, if we truncate the series (4) a t  n = 1, the 
first two equations of (5) reduce to, after elimination of c2, 

105bf-l8b!+ 153b:-66b1+2 = 0. (9) 

This equation has the following two real roots: 

b, = 0.0328, 0-3767. 

The first root is close to Michell's value b, = 0.0397, whereas the second root is not. 
Indeed, if we expand (4) in a Fourier Series, 

we see that the second solution, b, = 0-3767, nearly eliminates the fundamental of 
this series, meaning that the series could be dominated by a higher harmonic. This is 
very indicative of the behaviour that Chen & Saffman found for their irregular gravity 
waves. 

Encouraged by these preliminary results, we decided to explore the solutions of 
( 5 )  more carefully. To solve ( 5 )  we truncated the series (4) after N terms, which 
reduces the system (5) to N + 1 equations for the N + 1 unknowns b,, b,, . . . , b,, and c2. 
This system of equations was then solved on, a computer using Newton-Raphson 
iteration. Generally, three or four iterations were required to ensure that the left- 
hand aide of (5) was less than a stipulated tolerance of lo-*. 

Once the b,'s and c2 were determined, we numerically calculated the wave profile, 
the mean kinetic energy per unit area, and the mean potential energy per unit area. 
We used an 8-point Gauss-Legendre quadrature routine to perform the necessary 
integrations. 
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N 

10 
20 
40 
60 
80 

100 
120 

c2 

1.1941 64 
1.193253 
1.193073 
1.193062 
1.193065 
1.193069 
1.193072 

h lL  
0.141 116 
0.141051 
0-141052 
0.141056 
0.141059 
0.141060 
0*141061 

T 
0.038336 
0.038272 
0.038277 
0.038283 
0-038286 
0.038288 
0.038289 

V 
0.034586 
0.034545 
0.034554 
0.034560 
0.034563 
0.034564 
0-034566 

TABLE 1. Wave properties of the regular class 1 wave, calculated for 
different orders N of the series truncation 

Maximum 
percentage 

error 
2 
0.7 
0.1 
0.06 
0.05 
0-05 
0.03 

For the wave profile, x and y were obtained from the following integrals: 

in which ax/a$ and ayjaq5 were computed from (4). Both derivatives are singular at 
$ = 0, behaving as @-s+O($%). The integrals were computed by subtracting the 
singularities out of the integrands. 

The mean kinetic energy per unit area was computed from the formula 

The mean potential energy per unit area was computed from the formula 

Again, (14) was computed by subtracting the singularity at # = 0 due to ax/aq5 out 
of the integrand. 

The numerical procedure was programmed in FORTRAN IV and run on the CDC 7600 
computer at the Lawrence Berkeley Laboratory. 

4. Results and discussion 
Regular wave of class 1 

As a check on the numerical procedure we first calculated the Stokes wave of maximum 
height. Michell’s values for the bn’s and c2 were used to begin the calculation. Table 1 
shows the resulting values obtained for the wave properties, with the number of terms 
N in the truncated series taking on various values between 10 and 120. Also, computed 
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Class 

1 
1 
1 
1 

2 
2 
2 

3 
3 
3 

4 
4 

Type 
Regular 
Regular 
Regular 
Regular 

Regular 8 
Irregular 
Irregular 

Regular 
Irregular 
Irregular 

Regular 
Irregular 

Author 

Present paper 
Longuet-Higgins & Fox (1978) 
Cokelet (1977) 
Chen & Saffman (1980); 

Present paper 
Present paper 
Chen & Saffman (1980); 

b = 0.98997 

Present paper 
Present paper 
Chen & Saffmitn (1980) ; 
b = 0.99023 

Present paper 
Present paper 

b = 0*998$ 

C2 

1.1931 
1-1931 
1.1928 
1.1932 

0,5965 
0.5830 
0.5832 

0.3977 
0-3856 
0.3857 

0.2983 
0-2881 

h l L t  
0.14106 
0.14107 
0.14105 
0.14087 

0.07053 
0.06907 
0.06862 

0.04702 
0.04575 
0.0 4 5 4 5 

0.03527 
0.03417 

T V 

0-03829 0.03457 
0.03829 0.03457 
0.03827 0.03457 
0.03830 0.03457 

0.009572 0.008642 
0.008661 0-007945 
0.008675 0.007955 

0.004254 0.003841 
0.003716 0.003427 
0.003719 0.003430 

0.002393 0.002160 
0.002052 0.001898 

t L = nh, for regular waves of class n, L = X for irregular waves. 
$ The parameter b varies from zero for an infinitesimal wave to unity for the wave of maximum 

$ Regular waves of class n are related to regular waves of class 1 by the following relations: 
height. 

c2 = c;/n, h / L  = (h /L) , /n ,  T = T,/n2 and V = Vl/n2. 

TABLE 2. Comparisons between different calculations of wave properties 

values for 1wI2 and y were substituted into the left-hand side of the nondimensional 
Bernoulli equation - 2y/lwI2 = 1 to test the accuracy of the calculations a t  100 points 
equally spaced in +. The maximum percentage departure of the left-hand side of the 
equation from unity is shown in the last column of table 1 .  The error decreases with 
increasing N and the wave properties all appear to converge to values accurate to four 
or five significant figures. 

The height to wavelength ratios h / L  presented in table 1 were calculated from the 
following alternating series, which is derived directly from the Bernoulli equation : 

Our computed values for the properties of the regular class 1 wave ( N  = 120) are 
shown in table 2 to be in good agreement with other recently published values. 

The first column of data in table 3 shows the first 25 bn values obtained for the class 
1 wave with truncation a t  N = 120. The coefficients decrease rapidly at first, but then 
decrease slowly. The slow convergence of the Michell method was noted by Jeffreys 
(1951), and may reflect some of the mathematical difficulties in the Michell method 
pointed out by Grant (1973) and Norman (1974). However, for practical purposes, 
our calculations indicate that profiles and wave properties may be calculated with 
sufficient accuracy by the Michell method. 

Regular and irregular waves of class 2 

As an initial approximation to class 2 waves we set b, = 6 so that the first harmonic in 
(10) vanishes. If the initial values of all other coefficients are set equal to zero, the 
Newton-Raphson procedure yields for N = 120 the irregular class 2 wave profile 
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Wave class 

n 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 

1 

1~00000 
0-04119 
0.01252 
0.00606 
0.00360 
0.00240 
0.00173 
0.00131 
0~00102 
0.00083 
0.00068 
0.00057 
0.00049 
0.00042 
0.00037 
0.00033 
0.00029 
0.00026 
0*00023 
0*00021 
0*00019 
0.00018 
0.00016 
0.00015 
0.00014 

2 

1~00000 
0.34108 

- 0.06531 
0.07019 

0-03059 

0-0 1691 
- 0.00832 

0.01052 
- 0.00532 

0.00703 
- 0.00356 

0.00493 

0.00358 

0*00267 
- 0.00124 

0.00203 
- 0.00089 

0*00158 
- 0.00065 

0*00124 

- 0.02662 

- 0.01399 

- 0.00245 

-0.00173 

- 0.00047 

3 

1-00000 
0.33558 
0.23209 

0.03914 
0.05891 

- 0.041 93 
0.01400 
0.02772 

0.00659 
0.01612 

-0.01237 
0.00349 
0.01042 

- 0.00776 
0-00197 
0.00719 

- 0.00510 
0.00114 
0.00517 

- 0.00346 
0.00067 
0.00383 

- 0.00240 

- 0.1 1244 

- 0.02127 

4 

1*00000 
0-33446 
0.22593 
0.18454 

- 0.13983 
0.01982 
0.04119 
0.05 150 

- 0.05034 
0.00516 
0.01691 
0.02531 

-0.02513 
0*00169 
0.00881 
0-01517 

- 0.01443 
0.00034 
0.00513 
0.01005 

- 0.00895 
- 0.00014 

0.00318 
0.00707 

- 0.00581 

TABLE 3. Values for the first 25 Coefficients b,, calculated for the class 1 
(regular) wave, and irregular waves of classes 2, 3 and 4 

shown in figure 1. Because the irregular wave looks similar to a regular wave that is 
represented by a truncated series, further calculations were carried out to show that 
the numerical procedure may be used to obtain a second distinct solution representing 
the class 2 regular wave. In  order to do this, initial b, values for the class 2 regular 
wave were calculated directly from the b, values for the class 1 wave solution. If a 
sufficient number of these non-zero coefficient values (approximately 100 values for 
N = 120 truncation) are used, then the iteration scheme converges rapidly towards 
the regular wave solution shown in figure 2. If there are fewer than approximately 
80 non-zero initial coefficients the convergence is toward the irregular wave because 
alternate crests on the initial profile are sufficiently rounded to appear similar to the 
irregular wave. 

Table 2 lists the values computed for the highest irregular class 2 wave. These values 
differ substantially from those for the regular wave, but are close to the values for the 
largest-amplitude wave calculated by Chen & Saffman. Table 3 lists the first 26 b, 
values for the irregular class 2 wave. 
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X l L  

FIQURE 1. Profile of the irregular class 2 wave (solid line), compared with 
the profile of the regular clsss 2 wave (dashed line). 

-0.05 

X l L  

FIQURE 2. Profile of the regular class 2 wave (solid line) obtained by the iteration procedure with 
N = 120, compared with the profile of the regular class 2 wave (dashed line) obtained by directly 
plotting the class 1 solution with the coordinates reduced by a factor of 2. 
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FIGURE 3. Profile of the irregular class 3 wave (solid line), compared with 
the profile of the regular class 3 wave (dashed line). 
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FIGURE 4. Profile of the irregular class 4 wave (solid line), compared with 
the profile of the regular class 4 wave (dashed line). 
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Irregular waves of classes 3 and 4 

In order to calculate the higher class waves, initial values for b, and b, were selected 
such that the first and second harmonics in (10) vanish for the class 3 wave, and the 
first, second, and third harmonics vanish for the class 4 wave. The numerical pro- 
cedure always converged to irregular solutions, and no attempt was made to obtain 
the regular solutions by iteration. Our iteration procedure yielded only one irregular 
solution for class 3, and one for class 4, which are plottedin figures 3 and 4, respectively. 
Chen & Saffman present a second limiting irregular wave of class 3 having two adjacent 
sharp crests followed by two lower rounded crests. Such a profile is not symmetrical 
about a sharp crest, and therefore cannot be calculated by the present method. It is 
expected that class 4 would also have limiting irregular waves which are not sym- 
metrical about a sharp crest and/or contain sharp interior crests which, as discussed 
previously, are difficult to resolve by the present numerical method. 

Computed values for the properties of irregular class 3 and 4 waves are included 
in table 2. Again, these values are quite distinct from the corresponding values for 
the regular waves. The first 25 coefficients of the irregular waves are given in table 3. 
For the higher wave classes the coefficients decrease less rapidly with n. This result 
is to be expected because the higher numbered coefficients are required to accurately 
determine the narrower crests occurring in the higher wave classes. Also, note from 
table 3 that as the class number increases, the coefficients b, and b, become closer to 
values 4 and E, respectively, which are the values which make the first two harmonics 
in (10) vanish. 

5. Conclusions 
Michell’s (1893) series expansion procedure was shown to yield new solutions, 

identified as the highest-wave solutions for a new type of (irregular) waves studied 
by Chen & Saffman (1980). As a check of the procedure, Michell’s series expansion, 
truncated a t  120 terms, was shown to yield accurate results when applied to the 
regular class 1 (Stokes) wave. Wave profiles and values for the phase velocity, height- 
to-length ratio, kinetic energy per unit area and potential energy per unit area were 
calculated for irregular waves of classes 2 and 3, yielding good agreement with the 
largest amplitude waves calculated by Chen & Saffman. Results were also presented 
for a highest irregular wave of class 4, not considered by Chen & Saffman. 
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